19 research outputs found

    Improving RF characteristics of MEMS capacitive shunt switches

    Full text link
    characteristics of MEMS capacitive shunt switches, International review on modelling and simulations, vol. 2, no. 4, pp. 401-406. Available from Deakin Research Online

    Design and simulation of a low-actuation-voltage MEMS switch

    Get PDF
    This paper presents a low-actuation-voltage micro-electro-mechanical system (MEMS) capacitive shunt switch which has a very large bandwidth (4 GHz to 24 GHz). In this work, the isolation of MEMS switch is improved by adding two short high impedance transmission lines at the beginning and end of a coplanar waveguide (CPW). Simulating the switch demonstrates that a return loss (S11) is less than -26 dB for the entire frequency band, and perfect matching at 20 GHz in upstate position. A ramp dual pulse driver is also designed for reducing the capacitive charge injection for considering the reliability of the switch. The simulation results show that the shifting of voltage due to the capacitive charge is reduced by more than 35% of the initial value. Finally, the dynamic behavior of the MEMS switch is simulated by modal analysis and using CoventorWare to calculate the natural frequencies of the switch and its mode shapes. The switching ON and OFF time are 4.48 and 2.43 μs, respectively, with an actuation voltage of less than 15 V

    Design and simulation of a tunable MEMS filter for wireless biomedical signal transceivers

    Full text link
    This paper presents a new architecture for a high quality tunable MEMS filter that can be used in wireless biomedical signal transceivers. It consists of a &pi; match circuit with two shunt capacitive coupling switches separated by a piece of high impedance short transmission line, and also a series switch placed at the quarter wavelength distance away from the &pi; match circuit. The low actuation voltage and also tunability are important features of the design objective. All portions of the filter can be realized simultaneously. Thus, the filter docs not require any extra steps during its fabrication, and is not costly. The simulation results confirm the good performance of the filter.<br /

    An adaptive policy-based vertical handoff algorithm for heterogeneous wireless networks

    Full text link
    The next generation of wireless networks is envisioned as convergence of heterogeneous radio access networks. Since technologies are becoming more collaborative, a possible integration between IEEE 802.16 based network and previous generation of telecommunication systems (2G, ..., 3G) must be considered. A novel quality function based vertical handoff (VHO) algorithm, based on proposed velocity and average receive power estimation algorithms is discussed in this paper. The short-time Fourier analysis of received signal strength (RSS) is employed to obtain mobile speed and average received power estimates. Performance of quality function based VHO algorithm is evaluated by means of measure of quality of service (QoS). Simulation results show that proposed quality function, brings significant gains in QoS and more efficient use of resources can be achieved.<br /

    Low actuation-voltage shift in MEMS switch using ramp dual-pulse

    Full text link
    This paper proposes a ramp dual-pulse actuation-voltage waveform that reduces actuation-voltage shift in capacitive microelectromechanical system (MEMS) switches. The proposed waveform as well as two reported waveforms (dual pulse, and novel dual-pulse) are analyzed using equivalent-circuit and equation models. Based on the analysis outcome, the paper provides a clear understanding of trapped charge density in the dielectric. The results show that the proposed actuation-voltage waveform successfully reduces trapped charge and increases lifetime due to lowering of actuation-voltage shift. Using the proposed actuation-voltage waveform, the membrane reaches a steady state on the electrode faster.<br /

    Determining RF MEMS switch parameter by neural networks

    Full text link
    A challenge in designing a RF MEMS switch is the determination of its parameters to satisfy the application requirements. Often this is done through a set of comprehensive time consuming simulations. This paper employs neural networks and develops a supervised learner that is capable of determining S11 parameter for a RF MEMS shunt switch. The inputs are the length its L and the height of its gap. The outputs are S11s for eight different frequency points from 0 to V band. The developed learner helps prevent repetitive simulations when designing the specified switch. Simulation results are presented.<br /

    An ultra low power OTA with improved unity gain bandwidth product

    Full text link
    An operational transconductance amplifier (OTA) using dynamic threshold MOS (DTMOS) and hybrid compensation technique is presented in this paper. The proposed topology is based on a bulk and gate driven input differential pair. Two separate capacitors are employed for the OTA compensation where one of them is used in a signal path and the other one in a non-signal path. The circuit is designed in the 0.18&mu;m CMOS TSMC technology. The proposed design technique shows remarkable enhancement in unity gain-bandwidth and also in DC gain compared to the bulk driven input differential pair OTAs. The Hspice simulation results show that the amplifier has a 92dB open-loop DC gain and a unity gain-bandwidth of 135kHz while operating at 0.4V supply voltage. The total power consumption is as low as 386nW which makes it suitable for low-power bio-medical and bio-implantable applications

    RF techniques for lowering the actuation voltage of RF MEMS shunt capacitor switch for C-K band

    Full text link
    Increasing the capacitance ratio in RF MEMS shunt capacitive switch will increase its RF performance but also raise its actuation voltage. To improve the RF performance of the switch without increasing its capacitance ratio, this paper explores two methods: reducing the LC resonance from the mm-wave into the X-band by using an inductive bridge, and using two short high impedance transmission lines at both ends of the CPW line. Accordingly, this paper presents the design and simulation of an electro-static low actuation voltage and a very high isolation multipurpose switch with a very large bandwidth. The simulation results are presented and discussed

    Review of low actuation voltage RF MEMS electrostatic switches based on metallic and carbon alloys

    Full text link
    Radio frequency micro electro mechanical systems (RF MEMS) have enabled a new generation of devices that bring many advantages due to their very high performances. There are many incentives for the integration of the RF MEMS switches and electronic devices on the same chip. However, the high actuation voltage of RF MEMS switches compared to electronic devices poses a major problem. By reducing the actuation voltage of the RF MEMS switch, it is possible to integrate it into current electronic devices. Lowering the actuation voltage will have an impact on RF parameters of the RF MEMS switches. This investigation focuses on recent progress in reducing the actuation voltage with an emphasis on a modular approach that gives acceptable design parameters. A number of rules that should be considered in design and fabrication of low actuation RF MEMS switches are suggested

    Design and simulation of high isolation RF MEMS shunt capacitor switch for C-K band

    Full text link
    corecore